试题
题目:
(2006·陕西)如图,⊙O的直径AB=4,∠ABC=30°,BC=
4
3
,D是线段BC的中点.
(1)试判断点D与⊙O的位置关系,并说明理由;
(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.
答案
(1)解:点D在⊙O上;理由如下:
设⊙O与BC交于点M,连接AM,
∵AB是直径,
∴∠AMB=90°,
在直角△ABM中,BM=AB·cos∠ABC=4×
3
2
=2
3
,
∵BC=
4
3
,
∴M是BC的中点,则M与D重合.
∴点D在⊙O上;
(2)证明:
连接OD,
∵D是BC的中点,O是AB的中点,
∴DO是△ABC的中位线,
∴OD∥AC,则∠EDO=∠CED
又∵DE⊥AC,
∴∠EDO=90°,∠EDO=∠CED=90°
∴DE是⊙O的切线.
(1)解:点D在⊙O上;理由如下:
设⊙O与BC交于点M,连接AM,
∵AB是直径,
∴∠AMB=90°,
在直角△ABM中,BM=AB·cos∠ABC=4×
3
2
=2
3
,
∵BC=
4
3
,
∴M是BC的中点,则M与D重合.
∴点D在⊙O上;
(2)证明:
连接OD,
∵D是BC的中点,O是AB的中点,
∴DO是△ABC的中位线,
∴OD∥AC,则∠EDO=∠CED
又∵DE⊥AC,
∴∠EDO=90°,∠EDO=∠CED=90°
∴DE是⊙O的切线.
考点梳理
考点
分析
点评
专题
切线的判定;点与圆的位置关系.
(1)要求D与⊙O的位置关系,需先求OD的长,再与其半径相比较;若大于半径则在圆外,等于半径在圆上,小于半径则在圆内;
(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.
此题主要考查了点与圆的位置关系及切线的判定.解题时要注意连接过切点的半径是圆中的常见辅助线.
综合题;压轴题.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )