试题
题目:
如图,AB是⊙O的直径,BC切⊙O于B,AC交⊙O于P,E是BC边上的中点,连接PE,PE与⊙O相切吗?若相切,请加以证明;若不相切,请说明理由.
答案
答:PE与⊙O相切.
证明:如图,连接OP,OE
∵OA=0B=
1
2
AB,BE=EC,
∴OE为△ABC的中位线,
∴OE∥AC,
∴∠A=∠BOE,∠APO=∠POE,
∵OA=OP,
∴∠A=∠OPA,
∴∠BOE=∠POE,
∵OP=OB,OE=OE,
∴△OBE≌△OPE,
∴∠OBE=∠OPE=90°,
∴PE与⊙O相切.
答:PE与⊙O相切.
证明:如图,连接OP,OE
∵OA=0B=
1
2
AB,BE=EC,
∴OE为△ABC的中位线,
∴OE∥AC,
∴∠A=∠BOE,∠APO=∠POE,
∵OA=OP,
∴∠A=∠OPA,
∴∠BOE=∠POE,
∵OP=OB,OE=OE,
∴△OBE≌△OPE,
∴∠OBE=∠OPE=90°,
∴PE与⊙O相切.
考点梳理
考点
分析
点评
专题
切线的判定.
连接OP,OE,由已知我们可以得到OE为△ABC的中位线,然后即可证明△OBE≌△OPE,从而得到∠OBE=∠OPE=90°,即得到PE与⊙O相切.
本题主要考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
探究型.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )