试题
题目:
(2009·贺州)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.
(1)求证:DE是⊙O的切线;
(2)如果⊙O的半径是
3
2
cm,ED=2cm,求AB的长.
答案
(1)证明:连接OD,(1分)
∵O、E分别是BC、AC中点,
∴OE∥AB.
∴∠1=∠2,∠B=∠3.
∵OB=OD,
∴∠2=∠3.
∵OD=OC,OE=OE,
∴△OCE≌△ODE.
∴∠OCE=∠ODE.
∵∠C=90°,
∴∠ODE=90°.(2分)
∴DE是⊙O的切线.(3分)
(2)解:在Rt△ODE中,
∵OD=
3
2
,DE=2,
∴OE=
5
2
.(5分)
又∵O、E分别是CB、CA的中点,
∴AB=2·OE=2×
5
2
=5.
∴所求AB的长是5cm.(7分)
(1)证明:连接OD,(1分)
∵O、E分别是BC、AC中点,
∴OE∥AB.
∴∠1=∠2,∠B=∠3.
∵OB=OD,
∴∠2=∠3.
∵OD=OC,OE=OE,
∴△OCE≌△ODE.
∴∠OCE=∠ODE.
∵∠C=90°,
∴∠ODE=90°.(2分)
∴DE是⊙O的切线.(3分)
(2)解:在Rt△ODE中,
∵OD=
3
2
,DE=2,
∴OE=
5
2
.(5分)
又∵O、E分别是CB、CA的中点,
∴AB=2·OE=2×
5
2
=5.
∴所求AB的长是5cm.(7分)
考点梳理
考点
分析
点评
专题
切线的判定;全等三角形的判定与性质;三角形中位线定理.
(1)可证明DE是⊙O的切线,只要证得∠ODE=90°即可.
(2)先利用勾股定理求出OE的长,再利用中位线定理,可求出AB的长.
本题考查三角形的判定和性质、以及切线的判定,还有勾股定理、中位线定理等知识的综合运用.
几何综合题.
找相似题
(2011·深圳)下列命题是真命题的个数有( )
①垂直于半径的直线是圆的切线
②平分弦的直径垂直于弦
③若
x=1
y=2
是方程x-ay=3的一个解,则a=-1
④若反比例函数
y=-
3
x
的图象上有两点
(
1
2
,
y
1
),(1,
y
2
)
,则y
1
<y
2
.
(2006·贺州)如图,在⊙O中,E是半径OA上一点,射线EF⊥OA,交圆于B,P为EB上任一点,射线AP交圆于C,D为射线BF上一点,且DC=DP,下列结论:①CD为⊙O的切线;②PA>PC;③∠CDP=2∠A,其中正确的结论有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )