试题
题目:
(2012·黑河)如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为( )
A.4-π
B.4-2π
C.8+π
D.8-2π
答案
A
解:△ABC的面积是:
1
2
BC·AD=
1
2
×4×2=4,
∠A=2∠EPF=90°.
则扇形EAF的面积是:
90π×
2
2
360
=π.
故阴影部分的面积=△ABC的面积-扇形EAF的面积=4-π.
故选A.
考点梳理
考点
分析
点评
扇形面积的计算;切线的性质.
根据圆周角定理可以求得∠A的度数,即可求得扇形EAF的面积,根据阴影部分的面积=△ABC的面积-扇形EAF的面积即可求解.
本题主要考查了扇形面积的计算,正确求得扇形的圆心角是解题的关键.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )