试题
题目:
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )
A.(-
3
2
,
8
5
)
B.(-
3
,1)
C.(-
4
5
,
9
5
)
D.(-1,
3
)
答案
D
解:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,
∵⊙O的半径为2,点A的坐标为(2,2
3
),即OC=2,
∴AC是圆的切线.
∵点A的坐标为(2,2
3
),
∴OA=
2
2
+(2
3
)
2
=4,
∵OA=4,OC=2,
∴sin∠OAC=
1
2
,
∴∠OAC=30°,
∴∠AOC=60°,∠AOB=∠AOC=60°,
∴∠BOD=180°-∠AOB-∠AOC=60°,
∴OD=1,BD=
3
,即B点的坐标为(-1,
3
).故选D.
考点梳理
考点
分析
点评
专题
切线的性质;坐标与图形性质.
先利用切线AC求出OC=2=
1
2
OA,从而∠BOD=∠AOC=60°,则B点的坐标即可求出.
本题综合考查了圆的切线长定理和坐标的确定,是综合性较强的综合题,关键是根据切线长定理求出相关的线段,并求出相对应的角度,利用直角三角形的性质求解.
压轴题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黑河)如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为( )