试题
题目:
如图,PA,PB分别切⊙O于点A,B,点C是AB上一点,过C作⊙O的切线,交PA,PB于点D,E,若PA=6cm,则△PDE的周长是
12
12
cm.
答案
12
解:根据切线长定理得:AD=CD,BE=CE,PA=PB,则△PDE的周长=2PA=12cm.
考点梳理
考点
分析
点评
切线长定理.
根据切线长定理将△PDE的周长转化为切线长即可.
此题主要考查切线长定理的运用能力.
找相似题
(2008·泰州)如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2005·北京)如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2
3
,那么∠AOB等于( )
(2003·武汉)已知:如图,AB为⊙O的直径,CD、CB为⊙O的切线,D、B为切点,OC交⊙O于点E,AE的延长线交BC于点F,连接AD、BD.以下结论:①AD∥OC;②点E为△CDB的内心;③FC=FE;④CE·FB=AB·CF.其中正确的只有( )