试题
题目:
如图,PA、PB、DE分别切⊙O于A、B、C,⊙O的半径为6cm,OP的长为10cm,则△PDE的周长是
16cm
16cm
.
答案
16cm
解:连接OA.
∵PA、PB、DE分别切⊙O于A、B、C点,
∴BD=CD,CE=AE,PA=PB,OA⊥AP.
在直角三角形OAP中,根据勾股定理,得AP=8,
∴△PDE的周长为2AP=16.
故选答案为16cm.
考点梳理
考点
分析
点评
专题
切线长定理.
根据切线的性质,得到直角三角形OAP,根据勾股定理求得PA的长;根据切线长定理,得BD=CD,CE=AE,PA=PB,从而求解.
本题考查了切线长定理和勾股定理,是基础知识比较简单.
计算题.
找相似题
(2008·泰州)如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2005·北京)如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2
3
,那么∠AOB等于( )
(2003·武汉)已知:如图,AB为⊙O的直径,CD、CB为⊙O的切线,D、B为切点,OC交⊙O于点E,AE的延长线交BC于点F,连接AD、BD.以下结论:①AD∥OC;②点E为△CDB的内心;③FC=FE;④CE·FB=AB·CF.其中正确的只有( )