试题
题目:
已知P为⊙O外一点,PA,PB为⊙O的切线,A、B为切点,∠P=70°,C为⊙O上一个动点,且不与A、B重合,则∠BCA=( )
A.35°、145°
B.110°、70°
C.55°、125°
D.110°
答案
C
解:如图;连接OA、OB,则∠OAP=∠OBP=90°,
∴∠BOA=180°-∠P=110°,
∴∠AEB=
1
2
∠AOB=55°;
∵四边形AEBF是⊙O的内接四边形,
∴∠AFB=180°-∠AEB=125°,
①当C点在优弧AB上运动时,∠BCA=∠AEB=55°;
②当C点在劣弧AB上运动时,∠BCA=∠AFB=125°;
故选C.
考点梳理
考点
分析
点评
专题
切线长定理;圆周角定理;圆内接四边形的性质.
连接OA、OB,首先根据四边形内角和求出∠AOB的度数;由于C点的位置有两种情况,需分类讨论.
此题主要考查了切线的性质、圆周角定理以及圆内接四边形的性质.
动点型.
找相似题
(2008·泰州)如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2005·北京)如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2
3
,那么∠AOB等于( )
(2003·武汉)已知:如图,AB为⊙O的直径,CD、CB为⊙O的切线,D、B为切点,OC交⊙O于点E,AE的延长线交BC于点F,连接AD、BD.以下结论:①AD∥OC;②点E为△CDB的内心;③FC=FE;④CE·FB=AB·CF.其中正确的只有( )