试题
题目:
如图,PA、PB、CD是⊙O的切线,A、B、E是切点,CD分别交PA、PB于C、D两点,若∠APB=40°,PA=5,则下列结论:①PA=PB=5;②△PCD的周长为5;③∠COD=70°.正确的个数为( )
A.3个
B.2个
C.1个
D.0个
答案
B
解:∵PA、PB是⊙O的切线,
∴PA=PB,故①正确;
∵PA、PB、CD是⊙O的切线,
∴CA=CE,DE=DB,
∴△PCD的周长=PC+CE+DE+PD=PC+CA+PD+DB=PA+PB=2PA=10,故②错误;
连接OA、OB、OE,
∠AOB=180°-∠APB=140°,
∴∠COD=∠COE+∠EOD=
1
2
(∠AOE+∠BOE)=
1
2
∠AOB=70°,故③正确.
综上可得①③正确,共2个.
故选B.
考点梳理
考点
分析
点评
切线的性质;切线长定理.
根据切线长定理,可判断①正确;将△PCD的周长转化为PA+PB,可判断②错误;连接OA、OB、OE,求出∠AOB,再由∠COD=∠COE+∠EOD=
1
2
(∠AOE+∠BOE)=
1
2
∠AOB,可判断③正确;
本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.
找相似题
(2008·泰州)如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2005·北京)如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2
3
,那么∠AOB等于( )
(2003·武汉)已知:如图,AB为⊙O的直径,CD、CB为⊙O的切线,D、B为切点,OC交⊙O于点E,AE的延长线交BC于点F,连接AD、BD.以下结论:①AD∥OC;②点E为△CDB的内心;③FC=FE;④CE·FB=AB·CF.其中正确的只有( )