试题
题目:
如图,以正方形ABCD的边BC为直径作半圆O,过点D作直线切半圆于点F,交AB于点E,则△DAE与直角梯形EBCD的周长的比值为( )
A.
3
4
B.
4
5
C.
5
6
D.
6
7
答案
D
解:根据切线长定理得,BE=EF,DF=DC=AD=AB=BC.
设EF=x,DF=y,
∵(y-x)
2
+y
2
=(x+y)
2
,
∴y=4x,
∴三角形ADE的周长为12x,直角梯形EBCD周长为14x,
∴两者周长之比为12x:14x=6:7.
故选D.
考点梳理
考点
分析
点评
切线的性质;勾股定理;正方形的性质;切线长定理;相似三角形的判定与性质.
EF=x,DF=y,在△ADE中根据勾股定理可得列方程,从而得到三角形ADE的周长和直角梯形EBCD周长,从而可求得两者周长之比.
此题考查圆的切线长定理,正方形的性质和勾股定理等知识,解答本题关键是运用切线长定理得出EB=EF,DF=DC,从而求解.
找相似题
(2008·泰州)如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2005·北京)如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2
3
,那么∠AOB等于( )
(2003·武汉)已知:如图,AB为⊙O的直径,CD、CB为⊙O的切线,D、B为切点,OC交⊙O于点E,AE的延长线交BC于点F,连接AD、BD.以下结论:①AD∥OC;②点E为△CDB的内心;③FC=FE;④CE·FB=AB·CF.其中正确的只有( )