试题
题目:
(2012·江津区模拟)如图,PA、PB是⊙O的切线,切点为A、B,若OP=4,
PA=2
3
,则∠AOB的度数为( )
A.60°
B.90°
C.120°
D.无法确定
答案
C
解:∵PA、PB是⊙O的切线,
∴∠OAP=∠OBP=90°,∠APO=∠BPO.
又∵OP=4,
PA=2
3
,
∴cos∠APO=
PA
OP
=
3
2
,
∴∠APO=30°.
∴∠APB=60°,∠AOB=120°.
故选C.
考点梳理
考点
分析
点评
切线长定理;解直角三角形.
根据切线的性质得到直角△AOP,再根据锐角三角函数求得∠APO的度数;根据切线长定理求得∠APB的度数.
根据四边形的内角和定理即可求解.
综合运用了切线的性质定理、切线长定理、锐角三角函数进行求解.
找相似题
(2008·泰州)如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2005·北京)如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2
3
,那么∠AOB等于( )
(2003·武汉)已知:如图,AB为⊙O的直径,CD、CB为⊙O的切线,D、B为切点,OC交⊙O于点E,AE的延长线交BC于点F,连接AD、BD.以下结论:①AD∥OC;②点E为△CDB的内心;③FC=FE;④CE·FB=AB·CF.其中正确的只有( )