试题
题目:
(2012·中山一模)如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=20°,求∠P的度数为( )
A.50°
B.70°
C.110°
D.40°
答案
D
解:∵PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,
∴∠CAP=90°,PA=PB,
∴∠PAB=∠PBA,
∵∠BAC=20°,
∴∠PBA=∠PAB=90°-20°=70°,
∴∠P=180°-∠PAB-∠PBA=180°-70°-70°=40°,
故选D.
考点梳理
考点
分析
点评
专题
切线的性质;三角形内角和定理;等腰三角形的性质;切线长定理.
根据切线性质得出PA=PB,∠PAO=90°,求出∠PAB的度数,得出∠PAB=∠PBA,根据三角形的内和定理求出即可.
本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中.
计算题;压轴题.
找相似题
(2008·泰州)如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2005·北京)如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2
3
,那么∠AOB等于( )
(2003·武汉)已知:如图,AB为⊙O的直径,CD、CB为⊙O的切线,D、B为切点,OC交⊙O于点E,AE的延长线交BC于点F,连接AD、BD.以下结论:①AD∥OC;②点E为△CDB的内心;③FC=FE;④CE·FB=AB·CF.其中正确的只有( )