试题
题目:
(2000·吉林)如图,⊙O的外切梯形ABCD中,若AD∥BC,那么∠DOC的度数为( )
A.70°
B.90°
C.60°
D.45°
答案
B
解:∵DA、CD、CB都与⊙O相切,
∴∠ADO=∠ODC,∠OCD=∠OCB;
∵AD∥BC,
∴∠ADC+∠BCD=180°;
∴∠ODC+∠OCD=
1
2
(∠ADC+∠BCD)=
1
2
×180°=90°,即∠DOC=90°;
故选B.
考点梳理
考点
分析
点评
专题
切线长定理;平行线的性质.
由于AD、DC、CB都是⊙O的切线,根据切线长定理知:∠ADO=∠CDO,∠DCO=∠BCO;而AD∥BC,则2∠ODC和2∠OCD互补,由此可求得∠DOC的度数.
此题主要考查的是切线长定理及平行线的性质.
计算题;压轴题.
找相似题
(2008·泰州)如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2005·北京)如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2
3
,那么∠AOB等于( )
(2003·武汉)已知:如图,AB为⊙O的直径,CD、CB为⊙O的切线,D、B为切点,OC交⊙O于点E,AE的延长线交BC于点F,连接AD、BD.以下结论:①AD∥OC;②点E为△CDB的内心;③FC=FE;④CE·FB=AB·CF.其中正确的只有( )