试题
题目:
(2007·莱芜)如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45度.C、D、B在同一水平线上,又知河宽CD为50米,则山高AB是( )
A.50米
B.25米
C.25(
3
+1)米
D.75米
答案
C
解:设山高AB为x.
在Rt△ACB中有:CB=
x
tan30°
=
3
x,
在Rt△ADB中有:BD=
x
tan45°
=x.
而CD=CB-BD=(
3
-1)x=50,
解得x=25(
3
+1)米.
故选C.
考点梳理
考点
分析
点评
解直角三角形的应用-仰角俯角问题.
应用含AB的式子表示出BC,BD.根据BC-BD=CD=50得方程即可求出山高AB.
本题考查运用三角函数的定义解直角三角形.
找相似题
(2013·绵阳)如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为( )
(2012·孝感)如图,在塔AB前的平地上选择一点C,测出看塔顶的仰角为30°,从C点向塔底走100米到达D点,测出看塔顶的仰角为45°,则塔AB的高为( )
(2012·泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
(2010·钦州)如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )
(2010·丹东)如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE为5m,AB为1.5m(即小颖的眼睛距地面的距离),那么这棵树高是( )