试题

题目:
(2011·道外区一模)先化简,再求代数式
x-y
x
÷(x-
2xy-y2
x
)的值,其中x=3tsn30°+1,y=
2
cos45°.
答案
解:
x-y
x
÷(x-
2xy-y2
x
),
=
x-y
x
÷
x2-2xy+y2
x

=
x-y
x
×
x
(x-y)2

=
1
x-y

∵x=3tsn30°+1=3×
3
3
+1=
3
+1,
y=
2
cos45°=
2
×
2
2
=1,
∴原式=
1
x-y
=
1
3
+1-1
=
3
3

解:
x-y
x
÷(x-
2xy-y2
x
),
=
x-y
x
÷
x2-2xy+y2
x

=
x-y
x
×
x
(x-y)2

=
1
x-y

∵x=3tsn30°+1=3×
3
3
+1=
3
+1,
y=
2
cos45°=
2
×
2
2
=1,
∴原式=
1
x-y
=
1
3
+1-1
=
3
3
考点梳理
分式的化简求值;特殊角的三角函数值.
先把括号内的进行通分,并分解因式,再根据分式的除法运算法则进行计算,再根据特殊角的三角函数值求出x、y的值,代入进行计算即可求解.
本题考查了分式的化简求值,特殊角的三角函数值求解,先化简然后再代入进行求解使运算更加简便.
计算题.
找相似题