试题

题目:
在Rt△ABC中,∠C=90°,且tanA=3,则cosB的值为(  )



答案
D
解:解法1:利用三角函数的定义及勾股定理求解.
∵在Rt△ABC中,∠C=90°,tanA=3,
设a=3x,b=x,则c=
10
x,
∴cosB=
a
c
=
3
10
10

故选D.

解法2:利用同角、互为余角的三角函数关系式求解.
又∵tanA=
sinA
cosA
=3,
∴sinA=3cosA.
又sin2A+cos2A=1,
∴cosA=
10
10

∵A、B互为余角,
∴cosB=sin(90°-B)=sinA=
3
10
10

故选D.
考点梳理
互余两角三角函数的关系.
本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.
求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.
找相似题