试题
题目:
将图中的破轮子复原,已知弧上三点A、B、C,
(1)画出该轮子的圆心;(用直尺与圆规)
(2)若△ABC是等腰三角形,底边BC=10cm,腰AB=6cm,求圆片的半径R.
答案
解:(1)如图所示:分别作弦AB和AC的垂直平分线交点O即为所求的圆心;
(2)连接AO,OB,
∵BC=10cm,
∴BD=5cm,
∵AB=6cm,
∴AD=
6
2
-
5
2
=
11
cm,
设圆片的半径为R,在Rt△BOD中,OD=(R-
11
)cm,
∴R
2
=5
2
+(R-
11
)
2
,
解得:R=
18
11
11
cm,
∴圆片的半径R为
18
11
11
cm.
解:(1)如图所示:分别作弦AB和AC的垂直平分线交点O即为所求的圆心;
(2)连接AO,OB,
∵BC=10cm,
∴BD=5cm,
∵AB=6cm,
∴AD=
6
2
-
5
2
=
11
cm,
设圆片的半径为R,在Rt△BOD中,OD=(R-
11
)cm,
∴R
2
=5
2
+(R-
11
)
2
,
解得:R=
18
11
11
cm,
∴圆片的半径R为
18
11
11
cm.
考点梳理
考点
分析
点评
垂径定理的应用.
(1)根据垂径定理,分别作弦AB和AC的垂直平分线交点即为所求;
(2)连接AO,OB,利用垂径定理和勾股定理可求出圆片的半径R.
本题主要考查了垂径定理的推论,我们可以把垂径定理的题设和结论这样叙述:一条直线①过圆心,②垂直于弦,③平分弦,④平分优弧,⑤平分劣弧.在应用垂径定理解题时,只要具备上述5条中任意2条,则其他3条成立.
找相似题
(2008·临夏州)如图,是一条高速公路隧道的横截面,若它的形状是以O为圆心的圆的一部分,圆的半径OA=5米,高CD=8米,则路面宽AB=( )
(2006·襄阳)如图是一个小孩荡秋千的示意图,秋千链子OB的长度为2米,当秋千向两边摆动时,摆角∠BOD恰好
为60°,且两边的摆动角度相同,则它摆至最高位置时与其摆至最低位置时的高度之差AC是( )
(2003·安徽)如图所示,一种花边是由如图弧ACB组成的,弧ACB所在圆的半径为5,弦AB=8,则弧形的高CD为( )
(2013·安徽模拟)如图所示,阴影部分的面积S是h的函数(0≤h≤H),则该函数的图象是( )
(2012·青岛模拟)如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm)则该圆的半径为( )