试题
题目:
(2006·湖北)如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )
A.12.5寸
B.13寸
C.25寸
D.26寸
答案
D
解:设直径CD的长为2x,则半径OC=x,
∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,
∴AE=BE=
1
2
AB=
1
2
×10=5寸,
连接OA,则OA=x寸,根据勾股定理得x
2
=5
2
+(x-1)
2
,
解得x=13,
CD=2x=2×13=26(寸).
故选D.
考点梳理
考点
分析
点评
专题
垂径定理的应用;勾股定理;垂径定理.
根据垂径定理和勾股定理求解.
此题是一道古代问题,其实质是垂径定理和勾股定理.通过此题,可知我国古代的数学已发展到很高的水平.
应用题;压轴题.
找相似题
(2008·临夏州)如图,是一条高速公路隧道的横截面,若它的形状是以O为圆心的圆的一部分,圆的半径OA=5米,高CD=8米,则路面宽AB=( )
(2006·襄阳)如图是一个小孩荡秋千的示意图,秋千链子OB的长度为2米,当秋千向两边摆动时,摆角∠BOD恰好
为60°,且两边的摆动角度相同,则它摆至最高位置时与其摆至最低位置时的高度之差AC是( )
(2003·安徽)如图所示,一种花边是由如图弧ACB组成的,弧ACB所在圆的半径为5,弦AB=8,则弧形的高CD为( )
(2013·安徽模拟)如图所示,阴影部分的面积S是h的函数(0≤h≤H),则该函数的图象是( )
(2012·青岛模拟)如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm)则该圆的半径为( )