试题
题目:
(2012·台州)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为
10
10
厘米.
答案
10
解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,
设OF=x,则OM=16-x,MF=8,
在直角三角形OMF中,OM
2
+MF
2
=OF
2
即:(16-x)
2
+8
2
=x
2
解得:x=10
故答案为:10.
考点梳理
考点
分析
点评
专题
垂径定理的应用;勾股定理.
首先找到EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM是16-x,MF=8,然后在直角三角形MOF中利用勾股定理求得OF的长即可.
本题考查了垂径定理及勾股定理的知识,解题的关键是正确的作出辅助线构造直角三角形.
压轴题.
找相似题
(2008·临夏州)如图,是一条高速公路隧道的横截面,若它的形状是以O为圆心的圆的一部分,圆的半径OA=5米,高CD=8米,则路面宽AB=( )
(2006·襄阳)如图是一个小孩荡秋千的示意图,秋千链子OB的长度为2米,当秋千向两边摆动时,摆角∠BOD恰好
为60°,且两边的摆动角度相同,则它摆至最高位置时与其摆至最低位置时的高度之差AC是( )
(2003·安徽)如图所示,一种花边是由如图弧ACB组成的,弧ACB所在圆的半径为5,弦AB=8,则弧形的高CD为( )
(2013·安徽模拟)如图所示,阴影部分的面积S是h的函数(0≤h≤H),则该函数的图象是( )
(2012·青岛模拟)如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm)则该圆的半径为( )