试题
题目:
(2012·道外区二模)如图,点A、B、C是⊙0上的三点,B0平分∠ABC.求证:BA=BC.
答案
证明:连OA、OC,如图,
∵OA=OB,OB=OC,
∴∠ABO=∠BAO,∠CBO=∠BCO,
∵B0平分∠ABC,
∴∠ABO=∠CBO,
∴∠BAO=∠BCO,
∴△OAB≌△OCB,
∴AB=BC.
证明:连OA、OC,如图,
∵OA=OB,OB=OC,
∴∠ABO=∠BAO,∠CBO=∠BCO,
∵B0平分∠ABC,
∴∠ABO=∠CBO,
∴∠BAO=∠BCO,
∴△OAB≌△OCB,
∴AB=BC.
考点梳理
考点
分析
点评
专题
圆的认识;全等三角形的判定与性质.
连OA、OC,利用半径都相等得到OA=OB,OB=OC,根据等腰三角形的性质有∠ABO=∠BAO,∠CBO=∠BCO,而B0平分∠ABC,则∠ABO=∠CBO,根据三角形全等的判定得到△OAB≌△OCB,即可得到结论.
本题考查了圆的认识:圆心到圆上任意一点的距离都等于圆的半径.也考查了三角形全等的判定与性质.
证明题.
找相似题
(2013·温州)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作
BAC
,如图所示.若AB=4,AC=2,S
1
-S
2
=
π
4
,则S
3
-S
4
的值是( )
(2007·仙桃)如图,⊙O上有两点A与P,若P点在圆上匀速运动一周,那么弦AP的长度d与时间t的关系可能是下列图形中的( )
(2007·防城港)如图是一个由四个同心圆构成的靶子示意图,点O为圆心,且OA=AB=BC=CD=5,那么周长是接近100的圆是( )
(2006·厦门)在平面直角坐标系内存在⊙A,A(b,0),⊙A交x轴于O(0,0)、B(2b,0),在y轴上存在一动点C(C不与原点O重合),直线l始终过A、C,直线l交⊙A于E、F,在半圆EF上存在一点动点D且D不与E、F重合,则S
△DEA
的最大值为( )
(2004·南宁)中央电视台“开心辞典”栏目曾有这么一道题:圆的半径增加了一倍,那么圆的面积增加了( )