试题
题目:
如图所示,线段AD过圆心O交⊙O于D,C两点,∠EOD=78°,AE交⊙O于B,且AB=OC,求∠A的度数.
答案
解:如右图所示,连接OB,
∵AB=OC,OB=OC,
∴AB=OB,∠1=∠A,
又OB=OE,∠E=∠2=∠1+∠A=2∠A,
∴∠EOD=∠E+∠A=3∠A,
即3∠A=78°,
∴∠A=26度.
解:如右图所示,连接OB,
∵AB=OC,OB=OC,
∴AB=OB,∠1=∠A,
又OB=OE,∠E=∠2=∠1+∠A=2∠A,
∴∠EOD=∠E+∠A=3∠A,
即3∠A=78°,
∴∠A=26度.
考点梳理
考点
分析
点评
圆的认识;三角形内角和定理;等腰三角形的性质.
连接OB,构造两个等腰三角形并利用三角形内角和外角的关系解答.
作出辅助线OB是解答此题的关键,要充分利用同圆半径相等的特征来构造等腰三角形.
找相似题
(2013·温州)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作
BAC
,如图所示.若AB=4,AC=2,S
1
-S
2
=
π
4
,则S
3
-S
4
的值是( )
(2007·仙桃)如图,⊙O上有两点A与P,若P点在圆上匀速运动一周,那么弦AP的长度d与时间t的关系可能是下列图形中的( )
(2007·防城港)如图是一个由四个同心圆构成的靶子示意图,点O为圆心,且OA=AB=BC=CD=5,那么周长是接近100的圆是( )
(2006·厦门)在平面直角坐标系内存在⊙A,A(b,0),⊙A交x轴于O(0,0)、B(2b,0),在y轴上存在一动点C(C不与原点O重合),直线l始终过A、C,直线l交⊙A于E、F,在半圆EF上存在一点动点D且D不与E、F重合,则S
△DEA
的最大值为( )
(2004·南宁)中央电视台“开心辞典”栏目曾有这么一道题:圆的半径增加了一倍,那么圆的面积增加了( )