试题
题目:
(2002·荆门)如图,在⊙O中,P是直径AB上一动点,在AB同侧作AA′⊥AB,BB′⊥AB,且AA′=AP,BB′=BP,连接A′B′.当点P从点A移到点B时,A′B′的中点的位置( )
A.在平分AB的某直线上移动
B.在垂直AB的某直线上移动
C.在
AmB
上移动
D.保持固定不移动
答案
D
解:由题意知,四边形AA′B′B是直角梯形.
设A′B′的中点为D,则OD是直角梯形的中位线,即OD⊥AB.
又OD=
1
2
(AA′+BB′)=
1
2
(AP+BP)=
1
2
AB.
故OD的长又是定值,则点D是一定点.
故选D.
考点梳理
考点
分析
点评
专题
梯形中位线定理;圆的认识.
此题根据梯形的中位线定理,首先明确A′B′的中点的位置在过点O垂直于AB的直线上,再根据梯形的中位线定理,得到要求的中点到点O的距离是一个定值,即可说明该中点是一个定点.
本题要熟练运用梯形的中位线定理进行分析.
压轴题;动点型.
找相似题
(2013·温州)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作
BAC
,如图所示.若AB=4,AC=2,S
1
-S
2
=
π
4
,则S
3
-S
4
的值是( )
(2007·仙桃)如图,⊙O上有两点A与P,若P点在圆上匀速运动一周,那么弦AP的长度d与时间t的关系可能是下列图形中的( )
(2007·防城港)如图是一个由四个同心圆构成的靶子示意图,点O为圆心,且OA=AB=BC=CD=5,那么周长是接近100的圆是( )
(2006·厦门)在平面直角坐标系内存在⊙A,A(b,0),⊙A交x轴于O(0,0)、B(2b,0),在y轴上存在一动点C(C不与原点O重合),直线l始终过A、C,直线l交⊙A于E、F,在半圆EF上存在一点动点D且D不与E、F重合,则S
△DEA
的最大值为( )
(2004·南宁)中央电视台“开心辞典”栏目曾有这么一道题:圆的半径增加了一倍,那么圆的面积增加了( )