试题
题目:
如图,⊙O是等边△ABC的外接圆,⊙O的半径为4,则等边△ABC的边长为
4
3
4
3
.
答案
4
3
解:连接OB,OC,过点O作OD⊥BC于D,
∴BC=2BD,
∵⊙O是等边△ABC的外接圆,
∴∠BOC=
1
3
×360°=120°,
∵OB=OC,
∴∠OBC=∠OCB=
180°-∠BOC
2
=
180°-120°
2
=30°,
∵⊙O的半径为4,
∴OA=4,
∴BD=OB·cos∠OBD=4×cos30°=4×
3
2
=2
3
,
∴BC=4
3
.
∴等边△ABC的边长为4
3
.
故答案为:4
3
.
考点梳理
考点
分析
点评
三角形的外接圆与外心.
首先连接OB,OC,过点O作OD⊥BC于D,由⊙O是等边△ABC的外接圆,即可求得∠OBC的度数,然后由三角函数的性质即可求得OD的长,又由垂径定理即可求得等边△ABC的边长.
此题考查了垂径定理,圆的内接等边三角形,以及三角函数的性质等知识.此题难度不大,解题的关键是掌握数形结合思想的应用与辅助线的作法.
找相似题
(2013·永州)下列说法正确的是( )
(2010·本溪)如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,AB=4
2
,则⊙O的直径等于( )
(2003·台湾)如图所示,△ABC中,∠ABC=90°,O为△ABC的外心,∠C=60°,BC=2.若△AOB面积=a,△OBC面积=b,则下列叙述何者正确( )
(2002·黑龙江)在Rt△ABC中,AB=6,BC=8,则这个三角形的外接圆直径是( )
(2000·绵阳)等腰三角形的外心一定在( )