试题

题目:
H为△ABC的垂心,D,E,F分别是BC,CA,AB的中心.一个以H为圆心的⊙H交直线EF,FD,DE于A1,A2,B1,B2,C1,C2
求证:AA1=AA2=BB1=BB2=CC1=CC2
答案
证明:设BC=a,CA=b,AB=c,
△ABC外接圆半径为R,⊙H的半径为r.
连HA1,AH交EF于M,
青果学院
AA12=AM2+A1M2=AM2+r2-MH2
=r2+(AM2-MH2),①
又AM2-HM2=(
1
2
AH12-(AH-
1
2
AH12
=AH·AH1-AH2=AH2·AB-AH2
=cosA·bc-AH2,②
AH
sin∠ABH
=2R,
·AH2=4R2cos2A,
a
sinA
=2R,
·a2=4R2sin2A.
∴AH2+a2=4R2,AH2=4R2-a2.③
由①、②、③有
AA12=r2+
b2+c2-a2
2bc
·bc-(4R2-a2
=
1
2
(a2+b2+c2)-4R2+r2
同理,BB12=
1
2
(a2+b2+c2)-4R2+r2,CC12=
1
2
(a2+b2+c2)-4R2+r2
故有AA1=BB1=CC1
证明:设BC=a,CA=b,AB=c,
△ABC外接圆半径为R,⊙H的半径为r.
连HA1,AH交EF于M,
青果学院
AA12=AM2+A1M2=AM2+r2-MH2
=r2+(AM2-MH2),①
又AM2-HM2=(
1
2
AH12-(AH-
1
2
AH12
=AH·AH1-AH2=AH2·AB-AH2
=cosA·bc-AH2,②
AH
sin∠ABH
=2R,
·AH2=4R2cos2A,
a
sinA
=2R,
·a2=4R2sin2A.
∴AH2+a2=4R2,AH2=4R2-a2.③
由①、②、③有
AA12=r2+
b2+c2-a2
2bc
·bc-(4R2-a2
=
1
2
(a2+b2+c2)-4R2+r2
同理,BB12=
1
2
(a2+b2+c2)-4R2+r2,CC12=
1
2
(a2+b2+c2)-4R2+r2
故有AA1=BB1=CC1
考点梳理
三角形的外接圆与外心.
只须证明AA1=BB1=CC1即可.
本题考查了三角形的垂心,外心的综合运用,涉及勾股定理,正弦定理的运用,比较复杂,考查了学生分析问题的能力.
证明题.
找相似题