试题
题目:
已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG
2
=GC·GD.
答案
证明:延长GP至F,使PF=PG,连接AD,BF,CF,
∵G是△ABC的重心,
∴AG=2GP,BP=PC,
∵PF=PG,
∴四边形GBFC是平行四边形,
∴GF=2GP,
∴AG=GF,
∵BG∥CF,
∴∠1=∠2
∵过A、G的圆与BG切于G,
∴∠3=∠D,
又∠2=∠3,
∴∠1=∠2=∠3=∠D,
∴A、D、F、C四点共圆,
∴GA、GF=GC·GD,
即GA
2
=GC·GD.
证明:延长GP至F,使PF=PG,连接AD,BF,CF,
∵G是△ABC的重心,
∴AG=2GP,BP=PC,
∵PF=PG,
∴四边形GBFC是平行四边形,
∴GF=2GP,
∴AG=GF,
∵BG∥CF,
∴∠1=∠2
∵过A、G的圆与BG切于G,
∴∠3=∠D,
又∠2=∠3,
∴∠1=∠2=∠3=∠D,
∴A、D、F、C四点共圆,
∴GA、GF=GC·GD,
即GA
2
=GC·GD.
考点梳理
考点
分析
点评
专题
相交弦定理;三角形的重心;圆内接四边形的性质.
构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC·GD.于是GA
2
=GC·GD.
本题综合考查了圆中重要定理,结合图形,熟记并灵活应用定理是正确解题的基础,而通过倍长中线,构造平行四边形是解题的关键.
证明题.
找相似题
(2007·呼伦贝尔)如图,已知⊙O的两条弦AB、CD相交于AB的中点E,且AB=4,DE=CE+3,则CD的长为( )
(2004·日照)如图,P是直径AB上的一点,且PA=2,PB=6,CD是过点P的弦,那么下列PC的长度,符合题意的是( )
(2004·南昌)如图,在平面直角坐标系中,⊙O′与两坐标分别交于A,B,C,D四点,已知:A(6,0),B(0,-3),C(-2,0),则点D的坐标为( )
(2001·金华)如图,⊙O的弦CD交弦AB于P,AP=4,PB=3,CP=2,那么PD的长为( )
(2001·杭州)如图,已知⊙O的半径为5,两弦AB、CD相交于AB中点E,且AB=8,CE:ED=4:9,则圆心到弦CD的距离为( )