试题
题目:
如图,在直角梯形ABCD中,AB∥CD,AD⊥CD,AB=BC,又AE⊥BC于E.线段CD,CE相等吗?请说明理由.
答案
解:相等.理由如下:
连接AC,
∵CD∥AB,
∴∠DCA=∠CAB,
∵AB=BC,
∴∠CAB=∠ACB,
∴∠DCA=∠BCA,
又∵∠D=∠CEA=90°,
∴△ADC≌△AEC,
∴CD=CE.
解:相等.理由如下:
连接AC,
∵CD∥AB,
∴∠DCA=∠CAB,
∵AB=BC,
∴∠CAB=∠ACB,
∴∠DCA=∠BCA,
又∵∠D=∠CEA=90°,
∴△ADC≌△AEC,
∴CD=CE.
考点梳理
考点
分析
点评
直角梯形;全等三角形的判定与性质.
连接AC,证△ADC≌△AEC,可得CD=CE.
本题利用了梯形的性质,平行线的性质,等边对等角,全等三角形的判定和性质求解.
找相似题
(2012·台湾)如图,梯形ABCD中,∠DAB=∠ABC=90°,E点在CD上,且DE:EC=1:4.若AB=5,BC=4,AD=8,则四边形ABCE的面积为何?( )
(2012·长沙)下列四边形中,两条对角线一定不相等的是( )
(2010·双鸭山)直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,AD=DC=2
2
,则BC的长为( )
(2006·连云港)如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为( )
(2006·鄂尔多斯)如图,在直角梯形ABCD中,∠ABC=90°,DC∥AB,BC=3,DC=4,AD=5.动点P从B点出发,由B--C--D--A沿边运动,则△ABP的最大面积为( )