试题
题目:
(2011·苏州)如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.
(1)求证:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度数.
答案
(1)证明:∵AD∥BC,
∴∠ADB=∠EBC.
∵CE⊥BD,∠A=90°,
∴∠A=∠CEB,
在△ABD和△ECB中,
∵∠A=∠CEB,AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠BCE,
又∵BC=BD
∴△ABD≌△ECB;
(2)解:∵∠DBC=50°,BC=BD,
∴∠EDC=
1
2
(180°-50°)=65°,
又∵CE⊥BD,
∴∠CED=90°,
∴∠DCE=90°-∠EDC=90°-65°=25°.
(1)证明:∵AD∥BC,
∴∠ADB=∠EBC.
∵CE⊥BD,∠A=90°,
∴∠A=∠CEB,
在△ABD和△ECB中,
∵∠A=∠CEB,AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠BCE,
又∵BC=BD
∴△ABD≌△ECB;
(2)解:∵∠DBC=50°,BC=BD,
∴∠EDC=
1
2
(180°-50°)=65°,
又∵CE⊥BD,
∴∠CED=90°,
∴∠DCE=90°-∠EDC=90°-65°=25°.
考点梳理
考点
分析
点评
直角梯形;全等三角形的判定与性质.
(1)因为这两个三角形是直角三角形,BC=BD,因为AD∥BC,还能推出∠ADB=∠EBC,从而能证明:△ABD≌△ECB.
(2)因为∠DBC=50°,BC=BD,可求出∠BDC的度数,进而求出∠DCE的度数.
本题考查了全等三角形的判定和性质,以及直角梯形的性质,直角梯形有两个角是直角,有一组对边平行.
找相似题
(2012·台湾)如图,梯形ABCD中,∠DAB=∠ABC=90°,E点在CD上,且DE:EC=1:4.若AB=5,BC=4,AD=8,则四边形ABCE的面积为何?( )
(2012·长沙)下列四边形中,两条对角线一定不相等的是( )
(2010·双鸭山)直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,AD=DC=2
2
,则BC的长为( )
(2006·连云港)如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为( )
(2006·鄂尔多斯)如图,在直角梯形ABCD中,∠ABC=90°,DC∥AB,BC=3,DC=4,AD=5.动点P从B点出发,由B--C--D--A沿边运动,则△ABP的最大面积为( )