试题
题目:
将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )
A.(a+b)
2
=a
2
+2ab+b
2
B.(a-b)
2
=a
2
-2ab+b
2
C.a
2
-b
2
=(a+b)(a-b)
D.(a+2b)(a-b)=a
2
+ab-2b
2
答案
C
解:甲图形的面积为a
2
-b
2
,乙图形的面积为(a+b)(a-b),
根据两个图形的面积相等知,a
2
-b
2
=(a+b)(a-b),
故选C.
考点梳理
考点
分析
点评
平方差公式的几何背景.
首先求出甲的面积为a
2
-b
2
,然后求出乙图形的面积为(a+b)(a-b),根据两个图形的面积相等即可判定是哪个数学公式.
本题主要考查平方差的几何背景的知识点,求出两个图形的面积相等是解答本题的关键.
找相似题
(2013·大兴区二模)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
(2011·白下区一模)从边长为a的正方形中去掉一个边长为b的小正方形,如图,然后将剩余部分剪后拼成一个矩形,上述操作所能验证的等式是( )
(2009·广东一模)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是( )
如图,边长为(a+3)的正方形纸片剪出一个边长为a的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是( )
(2007·鄂尔多斯)在边长为a的正方形纸片中剪去一个边长为b的小正方形(a>b)(如图(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图(2)),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是
a
2
-b
2
=(a+b)(a-b)或(a+b)(a-b)=a
2
-b
2
a
2
-b
2
=(a+b)(a-b)或(a+b)(a-b)=a
2
-b
2
.(用字母表示)