试题
题目:
2004
2
-2007
2
+2006
2
-2005
2
+…+2
2
-7
2
=
2077036
2077036
.
答案
2077036
解:原式=(我008
我
-我007
我
)+(我006
我
-我00y
我
)+…+(我
我
-他
我
),
=(我008-我007)(我008+我007)+(我006-我00y)(我006+我00y)+…+(我-他)(我+他),
=我008+我007+我006+我00y+…+我+他,
=
(他+我008)×我008
我
,
=我0他7036.
故答案为:我0他7036.
考点梳理
考点
分析
点评
专题
平方差公式;有理数的混合运算.
直接运用因式分解,将前后两项按平方差公式分解后,再将剩余的项相加即可.
本题考查了因式分解中平方差公式的运用.
计算题;因式分解.
找相似题
(2012·云南)若
a
2
-
b
2
=
1
0
,
a-b=
1
2
,则a+b的值为( )
(2011·遵义)下列运算正确的是( )
(2010·眉山)下列运算中正确的是( )
(2006·柳州)在下列的计算中,正确的是( )
(2000·海南)下列乘法公式:(i)(a+b)(a-b)=a
2
-b
2
;(2)(a+b)
2
=a
2
+2ab+b
2
;(3)(a+b)
2
=a
2
-2ab+b
2
,正确的个数是( )