答案
证明:原式=(3n+1)(3n-1)-(3-n)(3+n)
=9n
2-1-(9-n
2)
=10n
2-10
=10(n+1)(n-1),
∵n为正整数,
∴(n-1)(n+1)为整数,
即(3n+1)(3n-1)-(3-n)(3+n)的值是10的倍数.
证明:原式=(3n+1)(3n-1)-(3-n)(3+n)
=9n
2-1-(9-n
2)
=10n
2-10
=10(n+1)(n-1),
∵n为正整数,
∴(n-1)(n+1)为整数,
即(3n+1)(3n-1)-(3-n)(3+n)的值是10的倍数.