试题
题目:
如图,∠AOP=∠BOP=15°,PC∥OB,PD⊥OB,若OC=4,则PD等于
2
2
.
答案
2
解:如图,过点P作PE⊥OA于E,
∵∠AOP=∠BOP,PD⊥OB,
∴PD=PE,
∵∠AOP=∠BOP=15°,PC∥OB,
∴∠PCE=∠AOB=15°×2=30°,
∠BOP=∠CPO,
∴∠AOP=∠CPO,
∴PC=OC=4,
在Rt△CEP中,PE=
1
2
PC=
1
2
×4=2,
∴PD=2.
故答案为:2.
考点梳理
考点
分析
点评
含30度角的直角三角形.
过点P作PE⊥OA于E,根据角平分线上的点到角的两边的距离相等可得PD=PE,根据两直线平行,同位角相等求出∠PCE=30°,两直线平行,内错角相等求出∠BOP=∠CPO,再求出∠AOP=∠CPO,根据等角对等边可得PC=OC,然后根据直角三角形30°角所对的直角边等于斜边的一半求出PE,即可得解.
本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,角平分线上的点到角的两边的距离相等的性质,平行线的性质,以及等角对等边的性质,熟记性质是解题的关键.
找相似题
(2012·河池)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为( )
如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是( )
如图,在△ABC中,∠C=90°,∠ABC=15°,点D、E分别在BC、AB上,且DE垂直平分AB,BD=3,则DC等于( )
如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是( )
已知∠AOB=60°,点P是∠AOB的内部一点,且点P到角的两边距离都等于4,则线段OP的长度是( )