试题
题目:
如图,在△ABC中,∠C=90°,∠ABC=15°,点D、E分别在BC、AB上,且DE垂直平分AB,BD=3,则DC等于( )
A.
3
3
2
B.
3
2
C.3
D.
3
3
答案
A
解:连接AD.
∵DE垂直平分AB,BD=3,
∴BD=AD=3;
∴∠B=∠BAD(等边对等角);
又∵∠ABC=15°,
∴∠BAC=15°;
∴∠ADC=2∠BAC=30°(外角定理),
∴
DC
AD
=cos∠ADC,
∴DC=AD·cos30°=
3
3
2
.
故选A.
考点梳理
考点
分析
点评
含30度角的直角三角形;线段垂直平分线的性质.
连接AD构建等腰三角形ABD,利用等腰三角形的“三线合一”的性质推知BD=AD=3,∴∠B=∠BAD;然后由外角定理求得直角三角形ACD中的锐角∠ADC=30°;最后根据余弦三角函数值的定义求得
DC=AD·cos30°=
3
3
2
.
本题考查了含30°角的直角三角形、线段垂直平分线的性质.解答本题时,通过作辅助线AD,构建了等腰三角形ABD,利用等腰三角形的性质来求DC的长度.
找相似题
(2012·河池)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为( )
如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是( )
如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是( )
已知∠AOB=60°,点P是∠AOB的内部一点,且点P到角的两边距离都等于4,则线段OP的长度是( )
在Rt△ABC中,∠C=90°,∠A=30°,AB=20,则BC的长度是( )