试题
题目:
如图,△ADC中,∠C=90°,∠B=30°,AD平分∠BAC交BC于D.
求证:CD=
1
2
BD.
答案
证明:∵∠C=90°,∠B=30°,
∴∠CAB=180°-90°-30°=60°,
∵AD平分∠BAC,
∴∠CAD=∠BAD=30°=∠B,
∴AD=BD,CD=
1
2
AD,
∴CD=
1
2
BD.
证明:∵∠C=90°,∠B=30°,
∴∠CAB=180°-90°-30°=60°,
∵AD平分∠BAC,
∴∠CAD=∠BAD=30°=∠B,
∴AD=BD,CD=
1
2
AD,
∴CD=
1
2
BD.
考点梳理
考点
分析
点评
专题
含30度角的直角三角形;三角形的角平分线、中线和高;三角形内角和定理;等腰三角形的性质.
根据三角形的内角和定理求出∠CAB,求出∠CAD、BAD,根据等腰三角形性质求出AD=BD,求出CD=
1
2
AD即可.
本题主要考查对三角形的内角和定理,等腰三角形的性质,三角形的角平分线,含30度角的直角三角形等知识点的理解和掌握,能求出AD=BD和CD=
1
2
AD是解此题的关键.
证明题.
找相似题
(2012·河池)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为( )
如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是( )
如图,在△ABC中,∠C=90°,∠ABC=15°,点D、E分别在BC、AB上,且DE垂直平分AB,BD=3,则DC等于( )
如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是( )
已知∠AOB=60°,点P是∠AOB的内部一点,且点P到角的两边距离都等于4,则线段OP的长度是( )