试题

题目:
青果学院如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.
(1)求证:AD垂直平分EF;
(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.
答案
(1)证明:∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,∠AED=∠AFD=90°,
∴∠DEF=∠DFE,
∴∠AEF=∠AFE,
∴AE=AF
∴点A、D都在EF的垂直平分线上,
∴AD垂直平分EF.

(2)答:AG=3DG.
理由:∵∠BAC=60°,AD平分∠BAC,
∴∠EAD=30°,
∴AD=2DE,∠EDA=60°,
∵AD⊥EF,∴∠EGD=90°,
∴∠DEG=30°
∴DE=2DG,
∴AD=4DG,
∴AG=3DG.
(1)证明:∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,∠AED=∠AFD=90°,
∴∠DEF=∠DFE,
∴∠AEF=∠AFE,
∴AE=AF
∴点A、D都在EF的垂直平分线上,
∴AD垂直平分EF.

(2)答:AG=3DG.
理由:∵∠BAC=60°,AD平分∠BAC,
∴∠EAD=30°,
∴AD=2DE,∠EDA=60°,
∵AD⊥EF,∴∠EGD=90°,
∴∠DEG=30°
∴DE=2DG,
∴AD=4DG,
∴AG=3DG.
考点梳理
角平分线的性质;线段垂直平分线的性质;含30度角的直角三角形.
(1)由AD为△ABC的角平分线,得到DE=DF,推出∠AEF和∠AFE相等,得到AE=AF,即可推出结论;(2)由已知推出∠EAD=30°,得到AD=2DE,在△DEG中,由∠DEG=30°推出DE=2DG,即可推出结论.
本题主要考查了角平分线的性质,线段垂直平分线的性质,含30°角的直角三角形的性质等知识点,解此题的关键是(1)证AE=AF和DE=DF;(2)证AD=2DE和DE=2DG.题目比较典型,综合性强.
证明题.
找相似题