试题
题目:
已知:如图,在Rt△ABC中,∠A=90°,CD平分∠ACB交边AB于点D,DE⊥BC垂足为E,AD=
1
2
BD.求证:BE=CE.
答案
证明:∵∠A=90°,DE⊥BC,CD平分∠ACB,
∴AD=DE(1分)
∵AD=
1
2
BD,
∴DE=
1
2
BD.(1分)
在Rt△BDE中,
∵DE=
1
2
BD,
∴∠B=30°.(1分)
在Rt△ABC中,
∵∠A=90°,∠B=30°,
∴∠ACB=60°.(1分)
∵CD平分∠ACB,
∴∠BCD=
1
2
∠ACB=30°.(1分)
∴∠BCD=∠B,
∴BD=CD.(1分)
∵DE⊥BC,
∴BE=CE.(1分)
证明:∵∠A=90°,DE⊥BC,CD平分∠ACB,
∴AD=DE(1分)
∵AD=
1
2
BD,
∴DE=
1
2
BD.(1分)
在Rt△BDE中,
∵DE=
1
2
BD,
∴∠B=30°.(1分)
在Rt△ABC中,
∵∠A=90°,∠B=30°,
∴∠ACB=60°.(1分)
∵CD平分∠ACB,
∴∠BCD=
1
2
∠ACB=30°.(1分)
∴∠BCD=∠B,
∴BD=CD.(1分)
∵DE⊥BC,
∴BE=CE.(1分)
考点梳理
考点
分析
点评
角平分线的性质;含30度角的直角三角形.
根据角平分线的性质,即可证得AD=DE,则在直角△BDE中,即可得到BD=2DE,则∠B=30°,根据角平分线的定义求得∠DCE的度数,根据等角对等边即可证得△BDC是等腰三角形,依据三线合一定理,即可证得.
本题考查了角平分线的性质定理,等角对等边,三线合一定理,关键是求得∠B的度数.
找相似题
(2012·河池)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为( )
如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是( )
如图,在△ABC中,∠C=90°,∠ABC=15°,点D、E分别在BC、AB上,且DE垂直平分AB,BD=3,则DC等于( )
如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是( )
已知∠AOB=60°,点P是∠AOB的内部一点,且点P到角的两边距离都等于4,则线段OP的长度是( )