试题
题目:
(2010·贵阳模拟)下图是某商场一楼与二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯次点B到点C上升的高度h是
4
4
m.
答案
4
解:过C作CE⊥AB,交AB的延长线于E;
在Rt△CBE中,∠CBE=180°-∠CBA=30°;
已知BC=8m,则CE=
1
2
BC=4m,即h=4m.
考点梳理
考点
分析
点评
专题
含30度角的直角三角形.
过C作CE⊥AB,交AB的延长线于E,在Rt△BCE中,易求得∠CBE=30°,已知了斜边BC为8m,根据直角三角形的性质即可求出CE的长,即h的值.
正确地构造出直角三角形,然后根据直角三角形的性质求解,是解决此题的关键.
应用题.
找相似题
(2012·河池)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为( )
如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是( )
如图,在△ABC中,∠C=90°,∠ABC=15°,点D、E分别在BC、AB上,且DE垂直平分AB,BD=3,则DC等于( )
如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是( )
已知∠AOB=60°,点P是∠AOB的内部一点,且点P到角的两边距离都等于4,则线段OP的长度是( )