试题
题目:
如图,在△ABC中,AB=AC=6cm,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的平分线,DF∥AB,交AE的延长线于F,则DF=
3
3
cm.
答案
3
解:∵AB=AC,∠BAC=120°,
∴∠B=
1
2
(180°-∠BAC)=
1
2
(180°-120°)=30°,
∵AD是△ABC的中线,
∴AD⊥BC,
∴AD=
1
2
AB=
1
2
×6=3cm,
∵AE是∠BAD的平分线,
∴∠BAE=∠EAD=
1
2
(90°-30°)=30°,
∵DF∥AB,
∴∠F=∠BAE=30°,
∴∠EAD=∠F,
∴DF=AD=3cm.
故答案为:3.
考点梳理
考点
分析
点评
含30度角的直角三角形;等腰三角形的判定与性质.
根据等腰三角形的性质求出∠B=30°,再根据等腰三角形三线合一的性质可得AD⊥BC,然后根据直角三角形30°角所对的直角边等于斜边的一半求出AD=
1
2
AB,再根据角平分线的定义求出∠BAE=∠EAD=30°,根据两直线平行,内错角相等求出∠F=30°,从而得到∠EAD=∠F,然后根据等角对等边可得DF=AD.
本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质,综合题,但难度不大,熟记性质是解题的关键.
找相似题
(2012·河池)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为( )
如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是( )
如图,在△ABC中,∠C=90°,∠ABC=15°,点D、E分别在BC、AB上,且DE垂直平分AB,BD=3,则DC等于( )
如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是( )
已知∠AOB=60°,点P是∠AOB的内部一点,且点P到角的两边距离都等于4,则线段OP的长度是( )