试题
题目:
如图,已知Rt△ABC中,AD⊥BC,∠ABC=2∠C,试说明AB+BD=CD的理由.
答案
解:∵Rt△ABC中,∠B=2∠C,
∴∠B=60°,∠C=30°.
∴BC=2AB.
∵AD⊥BC,
∴∠BAD=30°.
∴AB=2BD.
∴BC=4BD
∴CD=3BD.
∴AB+BD=CD.
解:∵Rt△ABC中,∠B=2∠C,
∴∠B=60°,∠C=30°.
∴BC=2AB.
∵AD⊥BC,
∴∠BAD=30°.
∴AB=2BD.
∴BC=4BD
∴CD=3BD.
∴AB+BD=CD.
考点梳理
考点
分析
点评
专题
含30度角的直角三角形.
由Rt△ABC中,∠B=2∠C,可知∠B=60°,∠C=30°,易证BC=2AB,由AD⊥BC,可知∠BAD=30°,同理可知AB=2BD,CD=3BD,故可以推出AB+BD=CD.
本题比较简单,考查的是直角三角形的性质,即在直角三角形中30°的角所对的直角边等于斜边的一半.
证明题.
找相似题
(2012·河池)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为( )
如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是( )
如图,在△ABC中,∠C=90°,∠ABC=15°,点D、E分别在BC、AB上,且DE垂直平分AB,BD=3,则DC等于( )
如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是( )
已知∠AOB=60°,点P是∠AOB的内部一点,且点P到角的两边距离都等于4,则线段OP的长度是( )