试题

题目:
青果学院已知:如图,在△ABC中,∠C=90°,BD平分∠ABC,BC=
1
2
AB,BD=2,则点D到AB的距离为(  )



答案
A
青果学院解:过D作DE⊥AB,
∵BD平分∠ABC,DC⊥BC,
∴DE=DC,
∵在△ABC中,∠C=90°,BC=
1
2
AB,
∴∠A=30°,∠ABC=60°,
∵BD平分∠ABC,
∴∠DBC=30°,
在Rt△BDC中,BD=4,∠DBC=30°,
∴CD=
1
2
BD=1,即DE=DC=1,
则D到AB的距离1.
故选:A.
考点梳理
含30度角的直角三角形;角平分线的性质.
过D作DE垂直于AB,由DC垂直于BC,且BD为角平分线,利用角平分线定理得到DE=DC,在直角三角形ABC中,BC等于AB的一半,得到∠A=30°,∠ABC=60°,再由BD为平分线得到∠DBC=30°,在直角三角形DBC中,利用30°所对的直角边等于斜边的一半由BD的长求出DC的长,得到DE的长,即可得到点D到AB的距离.
此题考查了含30°直角三角形的性质,角平分线定理,熟练掌握性质及定理是解本题的关键.
计算题.
找相似题