试题
题目:
如图所示,在△ABC中,∠B=90°,AB=BC,BD=CE,M是AC边的中点,
求证:△DEM是等腰三角形.
答案
证明:连接BM,
因为AB=BC,AM=MC,
所以BM⊥AC,且∠ABM=∠CBM=
1
2
∠ABC=45°,
因为AB=BC,
所以∠A=∠C=
180°-∠ABC
2
=45°,
所以∠A=∠ABM,所以AM=BM,
因为BD=CE,AB=BC,所以AB-BD=BC-CE,即AD=BE,
在△ADM和△BEM中,
AD=BE
∠A=∠EBM=45°
AM=BM
,
所以△ADM≌△BEM(SAS),
所以DM=EM,
所以△DEM是等腰三角形.
证明:连接BM,
因为AB=BC,AM=MC,
所以BM⊥AC,且∠ABM=∠CBM=
1
2
∠ABC=45°,
因为AB=BC,
所以∠A=∠C=
180°-∠ABC
2
=45°,
所以∠A=∠ABM,所以AM=BM,
因为BD=CE,AB=BC,所以AB-BD=BC-CE,即AD=BE,
在△ADM和△BEM中,
AD=BE
∠A=∠EBM=45°
AM=BM
,
所以△ADM≌△BEM(SAS),
所以DM=EM,
所以△DEM是等腰三角形.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰三角形的判定.
根据AB=BC,AM=MC,得出BM⊥AC,且∠ABM=∠CBM=
1
2
∠ABC=45°,进而得出△ADM≌△BEM,即可得出DM=EM.
此题主要考查了等腰三角形的性质以及全等三角形的判定与性质,根据已知得出△ADM≌△BEM是解题关键.
证明题.
找相似题
(2004·宿迁)如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )
(2002·淮安)在平面直角坐标系xoy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有( )
(2009·滕州市一模)已知点A(2,-2),在y轴上找一点P,使△AOP是等腰三角形,这样的点P共有几个?( )
平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有( )
如图,在△ABC中,∠ABC=45°,AD,CF都是高,相交于P,角平分线BE分别交AD,CF于Q,S,那么图中的等腰三角形的个数是( )