试题
题目:
如图,在△ABD中,C是BD上的一点,且AC⊥BD,AC=BC=CD.
(1)求证:△ABD是等腰三角形;
(2)求∠BAD的度数.
答案
解:(1)∵AC⊥BD,AC=BC=CD,
∴∠ACB=∠ACD=90°.
∴△ACB≌△ACD.
∴AB=AD.
∴△ABD是等腰三角形.
(2)∵AC⊥BD,AC=BC=CD,
∴△ACB、△ACD都是等腰直角三角形.
∴∠B=∠D=45°.
∴∠BAD=90°.
解:(1)∵AC⊥BD,AC=BC=CD,
∴∠ACB=∠ACD=90°.
∴△ACB≌△ACD.
∴AB=AD.
∴△ABD是等腰三角形.
(2)∵AC⊥BD,AC=BC=CD,
∴△ACB、△ACD都是等腰直角三角形.
∴∠B=∠D=45°.
∴∠BAD=90°.
考点梳理
考点
分析
点评
专题
等腰三角形的判定.
(1)根据已知利用SAS判定△ACB≌△ACD,从而得到AB=AD,即△ABD是等腰三角形;
(2)由已知可得到△ACB、△ACD都是等腰直角三角形,即∠B=∠D=45°,从而求得∠BAD=90°.
此题主要考查学生对等腰三角形的判定方法的理解及运用;发现并利用△ACB、△ACD都是等腰直角三角形是正确解答本题的关键.
计算题;证明题.
找相似题
(2004·宿迁)如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )
(2002·淮安)在平面直角坐标系xoy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有( )
(2009·滕州市一模)已知点A(2,-2),在y轴上找一点P,使△AOP是等腰三角形,这样的点P共有几个?( )
平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有( )
如图,在△ABC中,∠ABC=45°,AD,CF都是高,相交于P,角平分线BE分别交AD,CF于Q,S,那么图中的等腰三角形的个数是( )