试题
题目:
如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O,∠EBO=∠DCO且BE=CD.求证:△ABC是等腰三角形.
答案
证明:在△EBO和△DCO中,
∠EBO=∠DCO
∠EOB=∠DOC
BE=CD
,
∴△EBO≌△DCO(AAS),
∴OB=OC,
∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形.
证明:在△EBO和△DCO中,
∠EBO=∠DCO
∠EOB=∠DOC
BE=CD
,
∴△EBO≌△DCO(AAS),
∴OB=OC,
∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形.
考点梳理
考点
分析
点评
专题
等腰三角形的判定;全等三角形的判定与性质.
先利用“角角边”证明△EBO和△DCO全等,根据全等三角形对应边相等可得OB=OC,再根据等边对等角的性质求出∠OBC=∠OCB,然后求出∠ABC=∠ACB,根据等角对等边可得AB=AC,从而得证.
本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,求出∠ABC=∠ACB是解题的关键.
证明题.
找相似题
(2004·宿迁)如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )
(2002·淮安)在平面直角坐标系xoy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有( )
(2009·滕州市一模)已知点A(2,-2),在y轴上找一点P,使△AOP是等腰三角形,这样的点P共有几个?( )
平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有( )
如图,在△ABC中,∠ABC=45°,AD,CF都是高,相交于P,角平分线BE分别交AD,CF于Q,S,那么图中的等腰三角形的个数是( )