试题
题目:
(2011·龙岩质检)如图,AD是△ABC的平分线,DE,DF分别垂直AB、AC于E、F,连接EF,求证:△AEF是等腰三角形.
答案
证明:∵AD是△ABC的平分线,
∴∠BAD=∠CAD,(3分)
又∵DE,DF分别垂直AB、AC于E,F
∴∠DEA=∠DFA=90°(6分)
又∵AD=AD,∴△ADE≌△ADF.(8分)
∴AE=AF,即△AEF是等腰三角形(10分)
证明:∵AD是△ABC的平分线,
∴∠BAD=∠CAD,(3分)
又∵DE,DF分别垂直AB、AC于E,F
∴∠DEA=∠DFA=90°(6分)
又∵AD=AD,∴△ADE≌△ADF.(8分)
∴AE=AF,即△AEF是等腰三角形(10分)
考点梳理
考点
分析
点评
专题
等腰三角形的判定;全等三角形的判定与性质.
根据角平分线的性质知∠BAD=∠CAD;然后根据已知条件“DE,DF分别垂直AB、AC于E、F”得到∠DEA=∠DFA=90°;再加上公共边AD=AD,从而证明,△ADE≌△ADF;最后根据全等三角形的对应边相等证明△AEF的两边相等,所以△AEF是等腰三角形.
本题综合考查了等腰三角形的判定、全等三角形的判定与性质.解答此题时,根据全等三角形的判定定理ASA判定△ADE≌△ADF.
证明题.
找相似题
(2004·宿迁)如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )
(2002·淮安)在平面直角坐标系xoy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有( )
(2009·滕州市一模)已知点A(2,-2),在y轴上找一点P,使△AOP是等腰三角形,这样的点P共有几个?( )
平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有( )
如图,在△ABC中,∠ABC=45°,AD,CF都是高,相交于P,角平分线BE分别交AD,CF于Q,S,那么图中的等腰三角形的个数是( )