试题
题目:
如图示,AD∥BC,BD平分∠ABC.求证:△ABD是等腰三角形.
答案
证明:∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵AD∥BC,
∴∠CBD=∠ADB,
∴∠ABD=∠ADB,
∴AB=AD,
故△ABD是等腰三角形.
证明:∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵AD∥BC,
∴∠CBD=∠ADB,
∴∠ABD=∠ADB,
∴AB=AD,
故△ABD是等腰三角形.
考点梳理
考点
分析
点评
专题
等腰三角形的判定;角平分线的定义;平行线的性质.
根据角平分线的定义可得∠ABD=∠CBD,根据两直线平行,内错角相等可得∠CBD=∠ADB,然后求出∠ABD=∠ADB,然后利用等角对等边的性质即可得证.
本题考查了等腰三角形的判定,角平分线的定义,两直线平行,内错角相等的性质,熟记概念与性质是解题的关键.
证明题.
找相似题
(2004·宿迁)如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )
(2002·淮安)在平面直角坐标系xoy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有( )
(2009·滕州市一模)已知点A(2,-2),在y轴上找一点P,使△AOP是等腰三角形,这样的点P共有几个?( )
平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有( )
如图,在△ABC中,∠ABC=45°,AD,CF都是高,相交于P,角平分线BE分别交AD,CF于Q,S,那么图中的等腰三角形的个数是( )