试题
题目:
如图,点EF在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O,则△OEF的形状是
等腰三角形
等腰三角形
.
答案
等腰三角形
解:∵BE=CF,
∴BE+EF=CF+EF,即BF=CE,
在△ABF和△DCE中,
∠A=∠D
∠B=∠C
BF=CE
,
∴△ABF≌△BCE(AAS),
∴∠OEF=∠OFE,
∴OE=OF,
则△OEF的形状是等腰三角形.
故答案为:等腰三角形
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰三角形的判定.
由BE=CF,得到BF=CE,再由已知的两对角相等,利用AAS得出三角形ABF与三角形DCE全等,利用全等三角形的对应角相等得到一对角相等,再利用等角对等边得到OE=OF,即可确定出三角形OEF为等腰三角形.
此题考查了全等三角形的判定与性质,以及等腰三角形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.
计算题.
找相似题
(2004·宿迁)如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )
(2002·淮安)在平面直角坐标系xoy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有( )
(2009·滕州市一模)已知点A(2,-2),在y轴上找一点P,使△AOP是等腰三角形,这样的点P共有几个?( )
平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有( )
如图,在△ABC中,∠ABC=45°,AD,CF都是高,相交于P,角平分线BE分别交AD,CF于Q,S,那么图中的等腰三角形的个数是( )