试题

题目:
青果学院如图,∠MBN=30°,在射线BM上截取BA=a,动点P在射线BN上滑动,要使△PAB为等腰三角形,则满足条件的点P共有(  )



答案
C
解:当∠B=∠BAP时,构成等腰三角形可找到一个P点.
当∠B=∠BPA时,构成等腰三角形可找到一个P点.
当∠BAP=∠BPA时,构成等腰三角形可找到一个P点.
故可找到三个P点.
故选:C.
考点梳理
等腰三角形的判定.
有两个角相等的三角形叫做等腰三角形,根据此条件可找出符合条件的点P,根据角的不同应该能够找到三个点构成等腰三角形.
本题考查等腰三角形的判定,有两个角相等的三角形是等腰三角形,根据此判定定理可找符合条件的P点.
计算题.
找相似题