试题
题目:
(2013·河北)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.
以下是甲、乙两同学的作业:
甲:
1.以点C为圆心,AB长为半径画弧;
2.以点A为圆心,BC长为半径画弧;
3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).
乙:
1.连接AC,作线段AC的垂直平分线,交AC于点M;
2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).
对于两人的作业,下列说法正确的是( )
A.两人都对
B.两人都不对
C.甲对,乙不对
D.甲不对,乙对
答案
A
解:由甲同学的作业可知,CD=AB,AD=BC,
∴四边形ABCD是平行四边形,
又∵∠ABC=90°,
∴·ABCD是矩形.
所以甲的作业正确;
由乙同学的作业可知,CM=AM,MD=MB,
∴四边形ABCD是平行四边形,
又∵∠ABC=90°,
∴·ABCD是矩形.
所以乙的作业正确;
故选A.
考点梳理
考点
分析
点评
作图—复杂作图;矩形的判定.
先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;
先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.
本题考查了作图-复杂作图的应用及矩形的判定,从两位同学的作图语句中获取正确信息及熟练掌握矩形的判定定理是解题的关键.
找相似题
如图,AD为△ABC的中线,BE为三角形ABD中线,
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)作△BED中BD边上的高;
(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?
(1)画出△ABC的BC边上的高AD;
(2)画出△ABC的AB边上的中线CE;
(3)画出△ABC的AC边上的角平分线BF.
如图中,
(1)分别画出两个三角形的三条高.
(2)作一个三角形使它与左边钝角三角形全等(保留作图痕迹,不写作法).
已知A、B、C三个点.求作:⊙O,使它经过A,B,C,请保留图痕迹,不写作法.
如图,AD是△ABC的中线,BE是△ABD的中线
(1)若∠ABE=15°,∠BAD=30°,求∠BED度数;
(2)画出△BED的BD边上的高;
(3)若△ABC的面积为40,BD=5,求BD边上的高.