试题
题目:
(2013·湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
A.15°
B.25°
C.30°
D.10°
答案
A
解:∵Rt△CDE中,∠C=90°,∠E=30°,
∴∠BDF=∠C+∠E=90°+30°=120°,
∵△BDF中,∠B=45°,∠BDF=120°,
∴∠BFD=180°-45°-120°=15°.
故选A.
考点梳理
考点
分析
点评
专题
三角形的外角性质.
先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.
本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.
探究型.
找相似题
(2011·襄阳)如图,CD∥AB,∠1=120°,∠2=80°,则∠E的度数是( )
(2011·西藏)如图,在△ABC中,D是BC延长线上的一点,∠B=50°,∠ACD=110°,则∠A等于( )
(2010·肇庆)如图所示,已知AB∥CD,∠A=50°,∠C=∠E.则∠C等于( )
(2010·东营)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( )
(2009·娄底)如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是( )