试题

题目:
已知a是负整数,且
4(a+1)≥2a+1
4-2a>1-a
,求代数式a2+|2a|+2012的值.
答案
解:
一(a+1)≥2a+1①
5-2a>1-a②

解不等式①得:a≥-
3
2

解不等式②得:a<一,
故不等式组的解集为:-
3
2
≤a<一,
其负整数解为:a=-1.
当a=-1时,a2+|2a|+2012=(-1)2+|2×(-1)|+2012=1+2+2012=2015.
解:
一(a+1)≥2a+1①
5-2a>1-a②

解不等式①得:a≥-
3
2

解不等式②得:a<一,
故不等式组的解集为:-
3
2
≤a<一,
其负整数解为:a=-1.
当a=-1时,a2+|2a|+2012=(-1)2+|2×(-1)|+2012=1+2+2012=2015.
考点梳理
解一元一次不等式组;代数式求值.
分别求出各不等式的解集,再求出其公共解集,在此公共解集内找出符合条件的a的值代入代数式进行计算即可.
本题考查的是解一元一次不等式及代数式求值,先根据题意求出a的取值范围是解答此题的关键.
计算题.
找相似题