试题
题目:
已知点A(1,3),B(4,0),C(-2,-3),在如图所示的平面直角坐标系中描出各点.
(1)点A到y轴的距离为
1
1
;点C到x轴的距离为
3
3
;
(2)顺次连接A,B,C三点,得到△ABC,求△ABC的面积.
答案
1
3
解:如图所示:
(1)点A到y轴的距离为1;点C到x轴的距离为3;
(2)△ABC的面积=(3+6)×6÷2-3×3÷2-3×6÷2
=27-4.5-9
=13.5.
考点梳理
考点
分析
点评
三角形的面积;坐标与图形性质.
在如图所示的平面直角坐标系中描出各点.
(1)根据点A的横坐标的绝对值就是点A到y轴的距离,点C的纵坐标的绝对值就是点C到x轴的距离解答;
(2)根据三角形的面积公式列式进行计算即可求解.
本题考查了坐标与图形的关系,并根据题意作出图形,利用数形结合的思想是解题的关键.
找相似题
(2012·南昌模拟)等腰三角形ABC在直角坐标系中,底边的两端点坐标分别是(-3,m),(5,m),则能确定的是它的( )
在直角坐标系中顺次连结(2,3),(-2,3),(-4,-2),(4,-2)所成的四边形是( )
已知点P(-1,3),过点P向y轴作垂线,垂足是M,则点M的坐标为( )
如图,已知:△ABC为直角三角形,∠B=90°,AB垂直x轴,M为AC中点.若A点坐标为(3,4),M点坐标为(-1,1),则B点坐标为( )
平面直角坐标系的坐标原点是O(0,0),在x轴上有一点A(
3
,0),以OA为一边作面积为
3
2
的△OAB,使点B在y轴上,那么点B的坐标是( )